Identifying opportunities to improve calf health with transition milk

Prebiotics in transition milk could promote a healthier gut microbiome in calves

By Dianne Priamo and Kathryn Kroeze

A new University of Guelph study suggests that dairy farmers feed newborn calves milk from their mother for several days after colostrum feeding to help ensure health and prevent disease.

Dr. Michael Steele, a professor in the Department of Animal Biosciences in the Ontario Agricultural College, and graduate student Amanda Fischer-Tlustos looked at oligosaccharides — carbohydrates that act as prebiotics to stimulate healthy bacteria — in transition milk of cows on a commercial dairy farm. They looked at cows that had given birth once, primiparous, or multiple times, multiparous. It’s known that prebiotics can help support growth of certain gut bacteria, but researchers don’t know their precise function in calves.

“There’s a lot of these oligosaccharides present not only in the colostrum but also in subsequent milkings,” says Steele. “If transition milk is not fed, these prebiotics aren’t being delivered to the calf.”

Like other mammals, cows produce colostrum, the first milk that is rich in nutrients and antibodies, immediately after giving birth. On most farms, after this first meal, calves are switched to a milk or milk replacer diet. Following colostrum with transition milk could improve calf health, says Steele.

Digestive sickness stemming from imbalances in gut bacteria occur in about half of calves worldwide. Delivering prebiotics could promote a healthier gut microbiome in the first week of life and lower calves’ susceptibility to disease.

Steele plans to learn what role prebiotics play in the calf gut and how they might improve calf health. “We’re going to do a series of further experiments to learn more about these oligosaccharides,” he says. “It’s possible that they could significantly improve newborn calf welfare.”

This research was funded by Alberta Livestock and Meat Agency Ltd., the Saskatoon Colostrum Co. Ltd., Alberta Milk, SaskMilk, BC Dairy Association, Dairy Farmers of Manitoba, Trouw Nutrition, Bayer Animal Health, and the Natural Sciences and Engineering Research Council of Canada.

For more information, contact Dr. Michael Steele, Department of Animal Biosciences, at masteele@uoguelph.ca.

Published by Dairy at Guelph University of Guelph ON N1G 2W1 dairyatguelph.ca

Written and produced by Students Promoting Awareness of Research Knowledge (SPARK) uoguelph.ca/research/spark

Published by Dairy at Guelph University of Guelph ON N1G 2W1 dairyatguelph.ca

For more information, contact Dr. Michael Steele, Department of Animal Biosciences, at masteele@uoguelph.ca.

Written and produced by Students Promoting Awareness of Research Knowledge (SPARK) uoguelph.ca/research/spark

For more information, contact Dr. Michael Steele, Department of Animal Biosciences, at masteele@uoguelph.ca.

Written and produced by Students Promoting Awareness of Research Knowledge (SPARK) uoguelph.ca/research/spark

Prebiotics in transition milk could promote a healthier gut microbiome in calves

By Dianne Priamo and Kathryn Kroeze

A new University of Guelph study suggests that dairy farmers feed newborn calves milk from their mother for several days after colostrum feeding to help ensure health and prevent disease.

Dr. Michael Steele, a professor in the Department of Animal Biosciences in the Ontario Agricultural College, and graduate student Amanda Fischer-Tlustos looked at oligosaccharides — carbohydrates that act as prebiotics to stimulate healthy bacteria — in transition milk of cows on a commercial dairy farm. They looked at cows that had given birth once, primiparous, or multiple times, multiparous. It’s known that prebiotics can help support growth of certain gut bacteria, but researchers don’t know their precise function in calves.

“There’s a lot of these oligosaccharides present not only in the colostrum but also in subsequent milkings,” says Steele. “If transition milk is not fed, these prebiotics aren’t being delivered to the calf.”

Like other mammals, cows produce colostrum, the first milk that is rich in nutrients and antibodies, immediately after giving birth. On most farms, after this first meal, calves are switched to a milk or milk replacer diet. Following colostrum with transition milk could improve calf health, says Steele.

Digestive sickness stemming from imbalances in gut bacteria occur in about half of calves worldwide. Delivering prebiotics could promote a healthier gut microbiome in the first week of life and lower calves’ susceptibility to disease.

Steele plans to learn what role prebiotics play in the calf gut and how they might improve calf health. “We’re going to do a series of further experiments to learn more about these oligosaccharides,” he says. “It’s possible that they could significantly improve newborn calf welfare.”

This research was funded by Alberta Livestock and Meat Agency Ltd., the Saskatoon Colostrum Co. Ltd., Alberta Milk, SaskMilk, BC Dairy Association, Dairy Farmers of Manitoba, Trouw Nutrition, Bayer Animal Health, and the Natural Sciences and Engineering Research Council of Canada.

For more information, contact Dr. Michael Steele, Department of Animal Biosciences, at masteele@uoguelph.ca.

Published by Dairy at Guelph University of Guelph ON N1G 2W1 dairyatguelph.ca

Written and produced by Students Promoting Awareness of Research Knowledge (SPARK) uoguelph.ca/research/spark

Prebiotics in transition milk could promote a healthier gut microbiome in calves

By Dianne Priamo and Kathryn Kroeze

A new University of Guelph study suggests that dairy farmers feed newborn calves milk from their mother for several days after colostrum feeding to help ensure health and prevent disease.

Dr. Michael Steele, a professor in the Department of Animal Biosciences in the Ontario Agricultural College, and graduate student Amanda Fischer-Tlustos looked at oligosaccharides — carbohydrates that act as prebiotics to stimulate healthy bacteria — in transition milk of cows on a commercial dairy farm. They looked at cows that had given birth once, primiparous, or multiple times, multiparous. It’s known that prebiotics can help support growth of certain gut bacteria, but researchers don’t know their precise function in calves.

“There’s a lot of these oligosaccharides present not only in the colostrum but also in subsequent milkings,” says Steele. “If transition milk is not fed, these prebiotics aren’t being delivered to the calf.”

Like other mammals, cows produce colostrum, the first milk that is rich in nutrients and antibodies, immediately after giving birth. On most farms, after this first meal, calves are switched to a milk or milk replacer diet. Following colostrum with transition milk could improve calf health, says Steele.

Digestive sickness stemming from imbalances in gut bacteria occur in about half of calves worldwide. Delivering prebiotics could promote a healthier gut microbiome in the first week of life and lower calves’ susceptibility to disease.

Steele plans to learn what role prebiotics play in the calf gut and how they might improve calf health. “We’re going to do a series of further experiments to learn more about these oligosaccharides,” he says. “It’s possible that they could significantly improve newborn calf welfare.”

This research was funded by Alberta Livestock and Meat Agency Ltd., the Saskatoon Colostrum Co. Ltd., Alberta Milk, SaskMilk, BC Dairy Association, Dairy Farmers of Manitoba, Trouw Nutrition, Bayer Animal Health, and the Natural Sciences and Engineering Research Council of Canada.

For more information, contact Dr. Michael Steele, Department of Animal Biosciences, at masteele@uoguelph.ca.

Published by Dairy at Guelph University of Guelph ON N1G 2W1 dairyatguelph.ca

Written and produced by Students Promoting Awareness of Research Knowledge (SPARK) uoguelph.ca/research/spark

Prebiotics in transition milk could promote a healthier gut microbiome in calves

By Dianne Priamo and Kathryn Kroeze

A new University of Guelph study suggests that dairy farmers feed newborn calves milk from their mother for several days after colostrum feeding to help ensure health and prevent disease.

Dr. Michael Steele, a professor in the Department of Animal Biosciences in the Ontario Agricultural College, and graduate student Amanda Fischer-Tlustos looked at oligosaccharides — carbohydrates that act as prebiotics to stimulate healthy bacteria — in transition milk of cows on a commercial dairy farm. They looked at cows that had given birth once, primiparous, or multiple times, multiparous. It’s known that prebiotics can help support growth of certain gut bacteria, but researchers don’t know their precise function in calves.

“There’s a lot of these oligosaccharides present not only in the colostrum but also in subsequent milkings,” says Steele. “If transition milk is not fed, these prebiotics aren’t being delivered to the calf.”

Like other mammals, cows produce colostrum, the first milk that is rich in nutrients and antibodies, immediately after giving birth. On most farms, after this first meal, calves are switched to a milk or milk replacer diet. Following colostrum with transition milk could improve calf health, says Steele.

Digestive sickness stemming from imbalances in gut bacteria occur in about half of calves worldwide. Delivering prebiotics could promote a healthier gut microbiome in the first week of life and lower calves’ susceptibility to disease.

Steele plans to learn what role prebiotics play in the calf gut and how they might improve calf health. “We’re going to do a series of further experiments to learn more about these oligosaccharides,” he says. “It’s possible that they could significantly improve newborn calf welfare.”

This research was funded by Alberta Livestock and Meat Agency Ltd., the Saskatoon Colostrum Co. Ltd., Alberta Milk, SaskMilk, BC Dairy Association, Dairy Farmers of Manitoba, Trouw Nutrition, Bayer Animal Health, and the Natural Sciences and Engineering Research Council of Canada.

For more information, contact Dr. Michael Steele, Department of Animal Biosciences, at masteele@uoguelph.ca.

Published by Dairy at Guelph University of Guelph ON N1G 2W1 dairyatguelph.ca

Written and produced by Students Promoting Awareness of Research Knowledge (SPARK) uoguelph.ca/research/spark