Introduction & Objectives

- Dairy cows rely heavily on their nutrient intake to support the demands of pregnancy and lactation.
- When cows cannot consume sufficient dry matter to meet their energy requirements in the first weeks of lactation:
 - They enter a state of negative energy balance (NEB).
 - Cows in NEB mobilize body fat as a source of energy, increasing the risk for ketosis and other health disorders.

The objectives were to determine:

- How feeding behavior, feed intake, and milk production are altered in response to being fed a diet that does not meet nutrient requirements for production.
- If cows will alter their behavior to maximize nutrient consumption, particularly when fed a more easily sorted diet.

Methods

- Diets were diluted with straw and formulated for a 25% reduction in energy available for milk. 30 Holstein lactating dairy cows (DIM = 51±20; parity = 3±0.2) were enrolled.
- **2-wk Baseline**
 - Standard lactation diet (NE\textsubscript{L} = 1.66 Mcal/kg; 68% forage).
- **3-wk reduced energy Treatment diets**
 - Long (10.16 cm) or Short (2.54 cm) straw diet (NE\textsubscript{L} = 1.56 Mcal/kg; 73% forage).
- **2-wk Return to Baseline**
 - Standard lactation diet (NE\textsubscript{L} = 1.66 Mcal/kg; 68% forage).
- **Feeding behavior**
 - Automated feed bins recorded feed intake and time at each visit for each cow.
 - Fresh feed and ort samples from each cow to determine particle size distribution: long (>19mm), medium (<19, >8mm), short (<8, >4mm), and fine (<4mm).
 - Feed sorting was calculated as actual intake of each particle fraction expressed as a % of its predicted intake.
- Milk yield was measured at each milking (2x/d).

Results

In the first week after treatment exposure, all cows consumed less feed (P<0.01; Fig. 1a); one week later, they all produced less milk (P<0.01; Fig. 1d). Cows fed the Long straw diet spent more time feeding and ate more slowly (P<0.01; Fig. 1b,c). Cows on the Long treatment sorted more for the short and fine particles (P<0.01) and increased their sorting against the longest particles (P<0.01) (Fig. 1e).

Conclusions

- Cows on the long straw diet sorted more for the energy dense portions of the diet and against the less energy dense portions when exposed to a diet that was limited in the total energy available for milk production.
- Despite differences in DMI, milk yield remained similar between treatments, possibly due to sorting.
- This suggests that cows exposed to a diet that does not meet their nutrient requirements will sort that diet, when possible, to maximize nutrient consumption.

Figure 1. Weekly means of (a) dry matter intake (DMI), (b) feeding rate, (c) feeding time, and (d) milk yield, and (e) feed sorting.

Acknowledgements: This project was financially supported by an NSERC Discovery Grant.

Contact: tdevries@uoguelph.ca